Abstract

Pentachlorophenol (PCP) - cadmium (Cd) complex pollution has been identified as a form of persistent soil pollution in south China, exerting detrimental impacts on the indigenous soil bacterial communities. Hence, it is worthwhile to investigate whether and how bacterial populations alter in response to these pollutants. In this study, Escherichia coli was used as a model bacterium. Results showed that PCP exposure caused bacterial cell membrane permeability changes, intracellular ROS elevation, and DNA fragmentation, and triggered apoptosis-like cell death at low exposure concentration and necrosis at high exposure concentration. Cd exposure caused severe oxidative damage and cell necrosis in the tested bacterial strain. The co-exposure to PCP and Cd elevated the ROS level, stimulated the bacterial caspase activity, and induced DNA fragmentation, thereby leading to an apoptosis-like cell death. In conclusion, PCP-Cd complex pollution can cause bacterial population to decrease through apoptosis-like cell death pathway. However, it is worth noting that the subpopulation survives under the complex pollution stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call