Abstract
ObjectiveTelomere is required for maintaining chromosome stability and genome integrity, while telomere length is sensitive to environmental stressors. We aimed to identify the effects of multiple metals co-exposure as well as their joint effects with TERT-CLPTM1L variants on leukocyte telomere length (LTL). MethodsThis study included 842 workers from a coke-oven plant, of whom plasma concentrations of 23 metals and LTL were determined. Genetic variations in TERT-CLPTM1L were genotyped by using the Global Screening Array. Multipollutant-based statistical methods, including the Bonferroni-correction, backward elimination procedure, and LASSO penalized regression analysis, were used to select the LTL-associated metals. Generalized linear regression models were used to evaluate the joint effects of TERT-CLPTM1L variants with positive metal on LTL. ResultsEach 1% increase in plasma concentration of manganese (Mn) was significantly associated with a 0.153% increase in LTL [β(95%CI) = 0.153(0.075, 0.230), P < 0.001] in single-metal models after Bonferroni-correction. The multiple-metal models and the LASSO penalized regression analysis both indicated Mn as the sole significant predictor for LTL. Furthermore, 5 tagSNPs (rs33954691, rs6554759, rs465498, rs2455393, and rs31489) in TERT-CLPTM1L with high plasma Mn (>4.21 μg/L) showed joint effects on increasing LTL. ConclusionsOur study revealed the independent and positive association between plasma Mn and LTL when accounting for co-exposure to other metals. This effect can be further enhanced by TERT-CLPTM1L variants. These results may advance our understanding of the complex interplay between genetic and environmental factors on telomere length. Further experimental studies are warranted to elucidate the underlying mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.