Abstract

Acquired chemotherapeutic resistance of cancer cells can result from a Darwinistic evolution process in which heterogeneity plays an important role. In order to understand the impact of genetic heterogeneity on acquired resistance and second line therapy selection in metastatic melanoma, we sequenced the exomes of 27 lesions which were collected from 3 metastatic melanoma patients treated with targeted or non-targeted inhibitors. Furthermore, we tested the impact of a second NRAS mutation in 7 BRAF inhibitor resistant early passage cell cultures on the selection of second line therapies.We observed a rapid monophyletic evolution of melanoma subpopulations in response to targeted therapy that was not observed in non-targeted therapy. We observed the acquisition of NRAS mutations in the BRAF mutated patient treated with a BRAF inhibitor in 1 of 5 of his post-resistant samples. In an additional cohort of 5 BRAF-inhibitor treated patients we detected 7 NRAS mutations in 18 post-resistant samples. No NRAS mutations were detected in pre-resistant samples. By sequencing 65 single cell clones we prove that NRAS mutations co-occur with BRAF mutations in single cells. The double mutated cells revealed a heterogeneous response to MEK, ERK, PI3K, AKT and multi RTK - inhibitors.We conclude that BRAF and NRAS co-mutations are not mutually exclusive. However, the sole finding of double mutated cells in a resistant tumor is not sufficient to determine follow-up therapy. In order to target the large pool of heterogeneous cells in a patient, we think combinational therapy targeting different pathways will be necessary.

Highlights

  • The MAPK pathway, consisting of RAS-RAFMEK-ERK, is a highly conserved signaling cascade in eukaryotic cells conserved from yeast to humans with many vital cellular functions, such as proliferation, differentiation, migration, and apoptosis [1]

  • For all patients we performed exome sequencing on all of their samples and confirmed their mutational status (BRAFV600E mutated, BRAFWT/NRASWT or NRASQ61K mutated for patient 1, 2 and 3, respectively)

  • Genetic or transcriptional heterogeneity in tumors is a major obstacle to obtaining durable responses to www.impactjournals.com/oncotarget targeted therapy for metastatic melanoma

Read more

Summary

Introduction

The MAPK pathway, consisting of RAS-RAFMEK-ERK, is a highly conserved signaling cascade in eukaryotic cells conserved from yeast to humans with many vital cellular functions, such as proliferation, differentiation, migration, and apoptosis [1]. In the case of BRAF inhibitors, Shi et al identified reactivation of the MAPK pathway (70% of cases), mostly in the form of additional NRAS or KRAS mutation (18% and 7% of cases, respectively), CDKN2A loss (7% of cases), mutant BRAF amplification (19% of cases) or BRAF alternative splicing (13% of cases) as the most common resistance mechanisms. They identified the PI3K-PTEN-AKT pathway as the second important resistance pathway (22% of their post-treatment samples contained mutations in PI3K-AKT regulatory genes) [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call