Abstract

Abstract. The evolution of volcanic sulfur and the resulting radiative forcing following explosive volcanic eruptions is well understood. Petrological evidence suggests that significant amounts of halogens may be co-emitted alongside sulfur in some explosive volcanic eruptions, and satellite evidence indicates that detectable amounts of these halogens may reach the stratosphere. In this study, we utilise an aerosol–chemistry–climate model to simulate stratospheric volcanic eruption emission scenarios of two sizes, both with and without co-emission of volcanic halogens, in order to understand how co-emitted halogens may alter the life cycle of volcanic sulfur, stratospheric chemistry, and the resulting radiative forcing. We simulate a large (10 Tg of SO2) and very large (56 Tg of SO2) sulfur-only eruption scenario and a corresponding large (10 Tg SO2, 1.5 Tg HCl, 0.0086 Tg HBr) and very large (56 Tg SO2, 15 Tg HCl, 0.086 Tg HBr) co-emission eruption scenario. The eruption scenarios simulated in this work are hypothetical, but they are comparable to Volcanic Explosivity Index (VEI) 6 (e.g. 1991 Mt Pinatubo) and VEI 7 (e.g. 1257 Mt Samalas) eruptions, representing 1-in-50–100-year and 1-in-500–1000-year events, respectively, with plausible amounts of co-emitted halogens based on satellite observations and volcanic plume modelling. We show that co-emission of volcanic halogens and sulfur into the stratosphere increases the volcanic effective radiative forcing (ERF) by 24 % and 30 % in large and very large co-emission scenarios compared to sulfur-only emission. This is caused by an increase in both the forcing from volcanic aerosol–radiation interactions (ERFari) and composition of the stratosphere (ERFclear,clean). Volcanic halogens catalyse the destruction of stratospheric ozone, which results in significant stratospheric cooling, offsetting the aerosol heating simulated in sulfur-only scenarios and resulting in net stratospheric cooling. The ozone-induced stratospheric cooling prevents aerosol self-lofting and keeps the volcanic aerosol lower in the stratosphere with a shorter lifetime. This results in reduced growth by condensation and coagulation and a smaller peak global-mean effective radius compared to sulfur-only simulations. The smaller effective radius found in both co-emission scenarios is closer to the peak scattering efficiency radius of sulfate aerosol, and thus co-emission of halogens results in larger peak global-mean ERFari (6 % and 8 %). Co-emission of volcanic halogens results in significant stratospheric ozone, methane, and water vapour reductions, resulting in significant increases in peak global-mean ERFclear,clean (> 100 %), predominantly due to ozone loss. The dramatic global-mean ozone depletion simulated in large (22 %) and very large (57 %) co-emission scenarios would result in very high levels of UV exposure on the Earth's surface, with important implications for society and the biosphere. This work shows for the first time that co-emission of plausible amounts of volcanic halogens can amplify the volcanic ERF in simulations of explosive eruptions. It highlights the need to include volcanic halogen emissions when simulating the climate impacts of past or future eruptions, as well as the necessity to maintain space-borne observations of stratospheric compounds to better constrain the stratospheric injection estimates of volcanic eruptions.

Highlights

  • Sulfur gases emitted into the atmosphere by volcanic eruptions have a strong direct climate impact through the formation of sulfuric acid aerosol, which reflect incoming sunlight and cool the Earth’s surface (Robock, 2000)

  • We show that co-emission of volcanic halogens and sulfur into the stratosphere increases the volcanic effective radiative forcing (ERF) by 24 % and 30 % in large and very large co-emission scenarios compared to sulfur-only emission

  • Which limits the availability of OH for SO2 oxidation, leading to slower destruction of volcanic SO2 and an increase in SO2 e-folding time of 21 % and 40 % in HAL10 and HAL56 compared to SULF10 and SULF56, respectively

Read more

Summary

Introduction

Sulfur gases emitted into the atmosphere by volcanic eruptions have a strong direct climate impact through the formation of sulfuric acid aerosol, which reflect incoming sunlight and cool the Earth’s surface (Robock, 2000). Ozone is impacted dynamically by stratospheric circulation changes induced by aerosol heating and chemically by changes to ozone catalytic loss cycles. The addition of large amounts of volcanic aerosols increases the surface area of the stratosphere on which heterogeneous reactions can take place (Solomon, 1999). N2O5 reacts with water vapour on the surfaces of these volcanic aerosols to form HNO3. This effectively sequesters reactive NOx species into a long-lived reservoir and limits the availability of NOx radicals which take part in catalytic ozone loss reactions, reducing the chemical destruction of ozone (Crutzen, 1970). High-halogen loading may arise from anthropogenic or natural emissions

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call