Abstract

Selective catalytic reduction (SCR) of NOx by NH3 over a series of Mn–M/Z catalysts (M = Cr, Mn, Fe, Co, Ni, Cu, Zn, and Z = the ZSM-5 Zeolite) synthesized by wet impregnation method was investigated. Mn–Fe/Z, Mn–Co/Z, and Mn–Cu/Z catalysts exhibited approximately 100 % NOx conversion over a wide temperature range (200–360 °C) in a defined atmospheric condition, which was noticeably greater than that of Mn–Cr/Z (340–360 °C). Furthermore, the effect of addition of second metal oxide species to the initial Mn/Z catalyst on the structure of catalysts was studied by several characterization techniques. BET measurements revealed high surface area and pore volume of the Mn–Cu/Z catalyst. In addition, the XRD and UV–Vis DR results showed that addition of co-doped metal oxide species improved the dispersion of metal ions and inhibited crystallization of metal oxides. UV–Vis studies also were in good accordance with DTA/TG results confirming the formation of cobalt oxide and copper oxide clusters in Mn–Co/Z and Mn–Cu/Z catalysts, respectively. The FTIR spectra of pyridine adsorption, in addition, suggested the Mn–Cu/Z catalyst contained the most Lewis acid sites leading to more NOx adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call