Abstract
Carbon monoxide is often described as a competitive inhibitor of FeFe hydrogenases, and it is used for probing H(2) binding to synthetic or in silico models of the active site H-cluster. Yet it does not always behave as a simple inhibitor. Using an original approach which combines accurate electrochemical measurements and theoretical calculations, we elucidate the mechanism by which, under certain conditions, CO binding can cause permanent damage to the H-cluster. Like in the case of oxygen inhibition, the reaction with CO engages the entire H-cluster, rather than only the Fe(2) subsite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.