Abstract

AbstractWe present a simplified process sequence for the fabrication of large area n‐type silicon solar cells. The boron emitter and full area phosphorus back surface field are formed in one single high temperature step using doped glasses deposited by plasma enhanced chemical vapour deposition (PECVD) as diffusion sources. By optimizing the gas composition during the PECVD process, we not only prevent the formation of a boron rich layer (BRL), but also achieve doping profiles that exhibit a low dark saturation current density while allowing for contact formation by screen printing. The presented co‐diffusion process allows for major process simplification compared to the state of the art diffusion process relying on multiple high temperature processes, masking and wet chemistry steps.magnified imageSolar cell based on n‐type silicon featuring a co‐diffused boron emitter and phosphorus back‐surface field (BSF).(© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.