Abstract

Template matching is an important method used for object tracking, in order to find a given-pattern within a frame sequence. Pearson's Correlation Coefficient (PCC) is widely used to quantify the similarity between two images. Since this coefficient calculus is computed for each image pixel, it entails a computationally expensive process. In this article, an embedded co-design system is proposed, which implements the template matching, in order to accelerate this process. The dedicated co-processor, responsible for performing the PCC computation, is used in two configurations: serial and pipeline. Cuckoo Search (CS) is used to improve the search for the maximum correlation point of the image and the used template. The search process is implemented in software and is run by an embedded general-purpose processor. The performance results are compared to those obtained through Particle Swarm Optimization (PSO) using the same hardware approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.