Abstract

This work presents a strategy to minimise the network usage and the energy consumption of wireless battery-powered sensors in the observer problem over networks. The sensor nodes implement a periodic send-on-delta approach, sending new measurements when a measure deviates considerably from the previous sent one. The estimator node implements a jump observer whose gains are computed offline and depend on the combination of available new measurements. We bound the estimator performance as a function of the sending policies and then state the design procedure of the observer under fixed sending thresholds as a semidefinite programming problem. We address this problem first in a deterministic way and, to reduce conservativeness, in a stochastic one after obtaining bounds on the probabilities of having new measurements and applying robust optimisation problem over the possible probabilities using sum of squares decomposition. We relate the network usage with the sending thresholds and propose an iterative procedure for the design of those thresholds, minimising the network usage while guaranteeing a prescribed estimation performance. Simulation results and experimental analysis show the validity of the proposal and the reduction of network resources that can be achieved with the stochastic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call