Abstract

Co-design conditions for the design of a jumping-rule and a sampled-data control law for impulsive and impulsive switched systems subject to aperiodic sampled-data measurements are provided. Semi-infinite discrete-time Lyapunov–Metzler conditions are first obtained. As these conditions are difficult to check and generalize to more complex systems, an equivalent formulation is provided in terms of clock-dependent (infinite-dimensional) matrix inequalities. These conditions are then, in turn, approximated by a finite-dimensional optimization problem using a sum of squares based relaxation. It is proven that the sum of squares relaxation is non conservative provided that the degree of the polynomials is sufficiently large. It is emphasized that acceptable results are obtained for low polynomial degrees in the considered examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.