Abstract

Multidrug resistance (MDR) greatly hinders the efficacy of chemotherapy in a variety of hematological malignancies and solid tumors. Traditionally, Quercetin (Que) based co-delivery drugs strategies show lower water solubility and lack of motion ability for drugs active transfer. In order to overcome this disadvantage, we have developed a Janus nanomotors Pt@HSNs(DQ) for targeted combination therapy. The combined strategy could increase the intracellular accumulation of the two drugs (quercetin and doxorubicin) through the high-speed motion of the motor and higher killing rate of Dox on MCF-7/Adr cells by using quercetin. By reversing Dox resistance, Pt@HSNs(DQ), could achieve lower RI values (8.1) and higher RF values (6.8) in MCF-7/Adr cells compared to free Dox, which means Pt@HSNs (DQ) is effective against multidrug resistance. This work exhibits a novel nanoplatform, which could not only load chemotherapy drugs efficiently, but could also improve the effect of chemotherapy drugs by overcoming MDR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.