Abstract

A dual-sensitive nanoparticle delivery system was constructed by incorporating an acid sensitive hydrazone linker into thermosensitive nanoparticles (TSNs) for co-encapsulating doxorubicin (DOX) and interferon γ (IFNγ) and to realize the co-delivery of chemotherapy and immunotherapy agents against melanoma. DOX, a chemotherapeutic drug, was conjugated to TSNs by a pH-sensitive chemical bond, and IFNγ, a potent immune-modulator, was absorbed into TSNs through the thermosensitivity and electrostatics of nanoparticles. Consequently, the dual sensitive drug-loaded TSN delivery systems were successfully built and showed an obvious core-shell structure, good encapsulation efficiency of drugs, sustained and sensitive drug release, prolonged circulation time, as well as excellent synergistic antitumor efficiency against B16F10 tumor bearing mice. Moreover, the combinational antitumor immune responses of hydrazone bearing DOX/IFNγ-TSN (hyd) were strengthened by activating Th1-type CD4+ T cells, cytotoxic T lymphocytes, and natural killer cells, downregulating the expression levels of immunosuppressive cytokines, such as IL10 and TGFβ, and upregulating the secretion of IL2 and TNFα. Taken together, the multifunctional TSNs system provides a promising strategy for multiple drugs co-delivery with distinct properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.