Abstract

Dihydroartemisinin (DHA), a widely used antimalarial agent, has clinical potential for the treatment of hepatic carcinoma. Although chemotherapy is indispensable for tumor therapy, it is generally limited by poor solubility, low efficiency, rapid clearance, and side effects. As an emerging treatment method, photothermal therapy (PTT) has many outstanding properties, but suffers from poor photostability of photosensitizer and incomplete ablation. Multimodal therapies could combine the advantages of different therapy methods to improve antitumor efficiency. Hence, we designed a nano-delivery system (ICG&DHA@ZIF-8) using zeolitic imidazolate framework-8 (ZIF-8) with a high porous rate and pH sensitivity property, to co-load DHA and indocyanine green (ICG). Dynamic light scattering and transmission electron microscopy were used to characterize the prepared nanoparticles. The photothermal conversion and drug release performances of ICG&DHA@ZIF-8 were investigated. In vitro antitumor efficacy and cellular uptake were studied. The mechanism of the combination treatment was studied by reactive oxygen species level detection and western blot assays. In vivo antitumor assays were then studied with the guidance of ex vivo imaging. The results showed that the ICG&DHA@ZIF-8 based combination therapy could efficiently kill hepatic carcinoma cells and suppress tumor growth. This research provides a potential nanodrug for the treatment of hepatic carcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call