Abstract

Development of nanomedicines for effective therapy of acute lung injury (ALI), a common critical respiratory failure syndrome, remains to be challenging. We report here a unique design of a functional nanoplatform based on generation 5 (G5) poly(amidoamine) dendrimer-entrapped gold nanoparticles (Au DENPs) to co-deliver dexamethasone (Dex) and a microRNA-155 inhibitor (miR-155i) for combination chemotherapy and gene therapy of ALI. In this study, we synthesized Au DENPs with 10 Dex moieties attached per G5 dendrimer and an Au core diameter of 2.1 nm and used them to compress miR-155i. The generated polyplexes own a positive zeta potential (16-26 mV) and a small hydrodynamic diameter (175-230 nm) and display desired cytocompatibility and efficient miR-155i delivery to lipopolysaccharide (LPS)-activated alveolar macrophages, thus upregulating the suppressor of cytokine signaling 1 and IL-10 expression and downregulating the pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Likewise, as a synthetic glucocorticoid with a potent anti-inflammatory property, the attached Dex on the surface of Au DENPs could inhibit pro-inflammatory cytokine secretion by down-regulating cyclooxygenase-2 expression in the LPS-activated alveolar macrophages. The integration of Dex and miR-155i within one nanoformulation enables superior downregulation of pro-inflammatory cytokines for successful repair of damaged lung tissues in an ALI model, as demonstrated by histological examinations and pro-inflammatory cytokine downregulation in ALI lesion at the gene and protein levels. Such a combined chemotherapy and gene therapy strategy enabled by dendrimer nanotechnology may hold great promise to treat other types of inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.