Abstract

Hydrophobic curcumin and hydrophilic epigallocatechin gallate (EGCG) are reported to exhibit a variety of biological activities and may exhibit synergistic effects when used in combination. A co-encapsulation system was developed to improve their applicability and bioavailability. This delivery system consisted of a water-in-oil-in-water (W1/O/W2) double emulsion stabilized by whey protein isolate fibrils (WPIFs) and cellulose nanocrystals (CNCs). Double emulsions were fabricated using a two-step emulsification method using either WPIF-CNC complexes or WPIF alone. The physicochemical stability, encapsulation performance, and digestive properties of the delivery systems were then investigated. The double emulsions stabilized by the WPIF-CNC complexes were more resistant to heat and salt stress, exhibited greater encapsulation stability, and had a higher bioaccessibility for curcumin (67.8%) and EGCG (68.9%) than those stabilized by WPIFs. This research shows that the stability and bioaccessibility of curcumin and EGCG can be enhanced by co-encapsulating them in emulsion-based delivery systems using nanostructured protein-polysaccharide complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call