Abstract

Catalyzed oxidative reactions mediated by enzymes have been proposed as an effective remediation strategy to remove micropollutants. However, enzyme-catalyzed oxidation processes are usually limited to the substrates of phenols and amine compounds. The addition of synthetic redox mediators could extend the types of enzyme-catalyzed substrates. However, the actual applications were hindered by the high cost and potential toxicity of mediators. Here, we discovered a potential HRP-mediator system by exploring the removal of co-existing pollutants amlodipine (AML) and methylparaben (MeP). It was found that MeP served as a redox mediator could efficiently mediate the removal of AML by HRP/H2O2 system. Surface electrostatic potential analysis of AML molecule suggested that MeP radicals (MePOX) could abstract hydrogen from the N-H site on dihydropyridine moiety of AML and then be reduced to MeP. By exploring the mediating effects of substances with MeP-like structure, Hirshfeld charge was used to evaluate the mediating efficiency of mediators. For mediating the degradation of AML, when the Hirshfeld charge of mediator radical was around − 0.3000, the mediating efficiency was the highest. This study improved the HRP-mediated system and provided an efficient and green method for the degradation of co-existing pollutants AML and MeP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.