Abstract
Most tissues cannot survive without microvascular networks. In many cases, the host cannot vascularize implanted tissues, motivating the need for implantable vascular networks for tissue engineered grafts. However, engineering microvascular networks that are stable and functional for long times has proven challenging. The co-culture of neural progenitor cells with endothelial cells may lead to long term, functional microvascular networks. Ideally, these networks should be made from primary cells to avoid the potential safety concerns associated with immortalized orgenetically-engineered cells. Thus, we have investigated and developed a paradigm for isolating and co-culturing primary rat endothelial cells and neural progenitor cells in biodegradable poly(ethylene glycol)/poly(L-lysine) macroporous hydrogels. The co-culture of these primary cells in the gels led to stabilization of vessels with no evidence of vessel regression even as far out as 6 weeks, the longest time point studied. Further more, the vessels contained host red blood cells, demonstrating they anastomosed with the host and were functional. Functional vessels were found throughout the implants, and no adverse effects such as clotting or thrombosis were observed. This work suggests that a co-culture of primary cells seeded in a macroporous hydrogel is a novel method to promote stable functional vascular networks which are critical for engineering complex tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.