Abstract

BackgroundThe repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue.MethodThe phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of dermal and angiogenic genes. Furthermore, the co-culture system combined with dermal extracellular matrix hydrogel was used to repair the full-scale skin defects in rats.ResultThe co-culture of ASCs/EPCs could increase skin- and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASCs/EPCs group could significantly accelerate the repair of skin defects by promoting the regeneration of vascularized skin.ConclusionIt is feasible to replace traditional single-seed cells with the ASC/EPC co-culture system for vascularized skin regeneration. This system could ultimately enable clinicians to better repair the full-thickness skin defects and avoid donor site morbidity.

Highlights

  • The repair of large-scale full-thickness skin defects represents a challenging problem in skin tissue engineering [1, 2]

  • Adipose-derived stem cells (ASCs) can secrete a variety of biologically active factors such as vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), which are beneficial to enhance the viability of endothelial cells to promote angiogenesis

  • The results showed that the expression levels of Ck5, Ck19, Col I, and Col Type III collagen fibers (III) in the ASC/endothelial progenitor cells (EPCs) group (A+E group) were significantly higher than those in the ASC group (A group) and EPC group (E group) (Fig. 4d), suggesting that the co-culture of ASCs/EPCs could increase the expression of epidermal cell and collagen marker genes

Read more

Summary

Introduction

The repair of large-scale full-thickness skin defects represents a challenging problem in skin tissue engineering [1, 2]. Previous studies have found that EPCs participate in the process of skin formation and repair, and vascular endothelial cells enhance the activity of prefibroblasts and play an important role in the process of skin regeneration [12, 13]. As confirmed in previous studies, ASCs can accelerate the recruitment of EPCs, enhance their angiogenesis capability, and promote the formation of new blood vessels. The repair of large-scale full-thickness skin defects represents a challenging obstacle in skin tissue engineering. To address the most important problem in skin defect repair, namely insufficient blood supply, this study aimed to find a method that could promote the formation of vascularized skin tissue

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.