Abstract

The biological conversion of carbon monoxide (CO) has been highlighted for the development of a C1 gas biorefinery process. Despite this, the toxicity and low reducing equivalent of CO uptake make biological conversion difficult. The use of synthetic co-cultures is an alternative way of enhancing the performance of CO bioconversion. This study evaluated a synthetic co-culture consisting of Citrobacter amalonaticus Y19 and Sporomusa ovata for acetate production from CO. In this consortium, the CO2 and H2 produced by the water-gas shift reaction of C. amalonaticus Y19, were utilized further by S. ovata. Higher acetate production was achieved in the co-culture system compared to the monoculture counterparts. Furthermore, syntrophic cooperation via various reducing equivalent carriers provided new insights into the synergistic metabolic benefits with a toxic and refractory substrate, such as CO. This study also suggests an appropriate model for examining the syntrophic interaction between microbial species in a mixed community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.