Abstract

In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) at the Pt and Ru K edges, were carried out on three different carbon-supported PtRu electrocatalysts in an electrochemical cell in with methanol. The CO and OH adsorbate coverage on Pt and Ru were determined as a function of the applied potential via the novel delta XANES technique, and the particle morphology was determined from the EXAFS and a modeling technique. Both the bifunctional and direct CO oxidation mechanisms, the latter enhanced by electronic ligand effects, were evident for all three electrocatalysts; however, the dominant mechanism depended critically on the particle size and morphology. Both the Ru island size and overall cluster size had a very large effect on the CO oxidation mechanism and activation of water, with the bifunctional mechanism dominating for more monodispersed Ru islands, and the direct surface ligand effect dominating in the presence of larger Ru islands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.