Abstract
The recruitment and co-contraction of lumbar muscles were investigated during the voluntary development of slowly and rapidly varying trunk flexion and extension, lateral bending, and axial twisting moments. Myoelectric signals were recorded from 14 lumbar muscles in nine young men during maximum voluntary exertions and cyclic isometric exertions. System identification techniques were used to calibrate dynamic models of the relationship between myoelectric signals and force. To assess co-contraction, the predicted muscle forces were subdivided into a task-moment set of muscle forces that minimally satisfied moment equilibrium and a co-contraction set of muscle forces that produced zero net moment. The sum of co-contraction muscle forces was used to quantify the degree of co-contraction present. Co-contraction was largely dependent on the direction of exertion and relatively less dependent on the subject or the rate of exertion. Co-contractions were estimated to contribute approximately 16-19% to the sum of muscle forces at a lumbar cross section during attempted extension of the trunk. Estimated co-contractions during attempted lateral bending and axial twisting were two to three times greater, which demonstrates that co-contraction is a major determinant of spinal loading in these tasks. This analysis suggests that substantial contractions of lumbar muscles, especially during asymmetric exertions, are used for reasons other than equilibrating moments at the L3-L4 level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.