Abstract

The physical and chemical properties of apricot tree (AT), corncob (CC), and anthracite (CC) were systematically analyzed. Their combustion behaviors and blends were examined using a non-isothermal thermogravimetric method, which revealed the catalytic mechanism of biomass mineral composition in the combustion process. The presence of high CaO content resulted in better combustibility, particularly with an addition ratio of more than 50 % AT, which enhanced anthracite combustion. Kinetic analysis indicated that the random pore model had a better fit than the volume reaction model. At 75 % addition of AT and CC, the lowest apparent activation energies were observed, with values of 100.5 kJ/mol and 110.23 kJ/mol, respectively. Density functional theory calculations demonstrated that the presence of CaO caused reconfiguration in the coal's molecular structure, making it easier for aliphatic chains attached to six-membered rings to detach. The co-combustion process and catalytic combustion mechanism of biomass and coal were discussed, highlighting CaO's ability to remove oxygen-containing functional groups and aliphatic chains, while facilitating O2 diffusion within the molecular structure. Conversely, SiO2 tended to generate silicates, leading to the deactivation of CaO's catalytic effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call