Abstract
Co-clustering has been broadly applied to many domains such as bioinformatics and text mining. However, model-based spatial co-clustering has not been studied. In this paper, we develop a co-clustering method using a generalized linear mixed model for spatial data. To avoid the high computational demands associated with global optimization, we propose a heuristic optimization algorithm to search for a near optimal co-clustering. For an application pertinent to Integrated Pest Management, we combine the spatial co-clustering technique with a statistical inference method to make assessment of pest densities more accurate. We demonstrate the utility and power of our proposed pest assessment procedure through simulation studies and apply the procedure to studies of the persea mite (Oligonychus perseae), a pest of avocado trees, and the citricola scale (Coccus pseudomagnoliarum), a pest of citrus trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Agricultural, Biological, and Environmental Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.