Abstract

Performance bounds are given for exploratory co-clustering/blockmodeling of bipartite graph data, where we assume the rows and columns of the data matrix are samples from an arbitrary population. This is equivalent to assuming that the data is generated from a nonsmooth graphon. It is shown that co-clusters found by any method can be extended to the row and column populations, or equivalently that the estimated blockmodel approximates a blocked version of the generative graphon, with estimation error bounded by $O_{P}(n^{-1/2})$. Analogous performance bounds are also given for degree-corrected blockmodels and random dot product graphs, with error rates depending on the dimensionality of the latent variable space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.