Abstract

Hypothesis.Following the observation of a microfibrillar phase in sodium dodecylsulfate (SDS)-glycerol mixtures, it is hypothesized that this phase is a crystalline structure containing SDS and glycerol, where the interaction between sulfate and glycerol layers mediates the co-assembly, which also could be universal for similar systems formed by n-alkyl sulfate homologues.Experiment.n-alkyl sulfate glycerol solutions were studied using a combination of optical microscopy, small- and wide-angle X-ray scattering (SAXS/WAXS). Time-resolved SAXS was employed to determine the phase formation in SDS-glycerol-water mixtures.Findings.The microfibrillar crystalline phase was reproduced in even-chained n-alkyl sulfates with a chain length between 12 and 18 carbon atoms, where the phase lamellar period increased uniformly with the alkyl chain length. Reconstruction of electron density profiles from the diffraction patterns allowed the lamellar structural motif of the phase, the glycerol location and stoichiometry to be determined. When SDS-glycerol-water mixtures with water concentration below 6 wt% are isothermally solidified at 20 °C, SDS-glycerol crystals and/or anhydrous SDS form, where the former is inhibited by the latter at higher water concentrations. The learnings from the SDS-glycerol phase formation allows new gels to be created, utilising the glycerol-sulfate motif generating microfibrils. This expands the knowledge of the applicable formulation space for SDS-water containing mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call