Abstract
Cancer vaccines targeting tumor specific neoantigens derived from nonsynonymous mutations of tumor cells have emerged as an effective approach to induce antitumor T cells responses for personalized cancer immunotherapy. Despite the enormous potential of synthetic peptides as a common modality for neoantigen vaccines, their practical efficacy was limited due to their relatively low immunogenicity. Herein, we modify neoantigen peptide (Adpgk) derived from MC-38 colon carcinoma by supplementing ten consecutive positively-charged lysines (10 K-Adpgk) to obtain cationic polypeptide. And then we made them self-assemble with toll-like receptor 9 (TLR-9) agonist CpG oligodeoxynucleotides (CpG ODN) adjuvant directly forming antigen/adjuvant integrated nanocomplexes (PCNPs) through electrostatic interaction for potent tumor immunotherapy. The optimal formed PCNPs were around 175 nm with uniform size distribution and could maintain stability in physiological saline solution. CpG ODN and 10 K-Adpgk in the formed PCNPs could be effectively uptake by dendritic cells (DCs) and stimulate the maturation of DCs as well as improving the efficiency of antigen cross-presentation efficiency in vitro. Furthermore, the PCNPs vaccine could markedly improve neoantigen and adjuvant co-delivery efficiency to lymphoid organs and activate cytotoxic T cells. In addition, vaccination with PCNPs could not only offer prophylactic to protect mice from challenged MC-38 colorectal tumors, but also achieve a better anti-tumor effect in an established colorectal tumor model, and significantly prolong the survival rate of tumor-bearing mice. Therefore, this work provided a versatile but effective method for neoantigen peptide and CpG ODN co-assembly vaccine platform for efficient colorectal cancer immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.