Abstract

JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) is a hydrolytically stable flexible metal-organic framework. Owing to its unusual adsorptive properties, JUK-8 can be considered as a promising sensing material for construction of detectors of volatile organic compounds (VOCs) in air. Quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) is a versatile method dedicated to characterization of porous materials. In this work, QE-TPDA was employed to study co-adsorption of water and selected alcohols in JUK-8. For the first time an infrared detector sensitive to organic compounds was used in the QE-TPDA measurements, allowing the study of the influence of water vapor on sorption of VOCs. The QE-TPDA profiles of the studied alcohols, exhibiting two desorption maxima and two adsorption minima, are consistent with the standard sorption isotherms, revealing a two-step adsorption-desorption mechanism. The profiles recorded in the presence of water are noticeably changed in different ways for different alcohols. While at low relative humidity (RH) (ca. 20%) the low temperature adsorption states of ethanol and 1-propanol were only slightly destabilized, for 2-propanol almost complete suppression of adsorption was observed. The results found for moderate RH levels (ca. 50%) indicated that the opening of the JUK-8 structure, responsible for its breathing behavior, was followed by the filling of the just generated pores with a water-alcohol mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.