Abstract

Numerous reports explaining the beneficial health effects of soluble fibres and probiotics on lifestyle disorders have been published. However, a little information is available on coadministration of soluble fibres such as gum acacia & inulin and probiotic lactobacilli. Therefore, in the present study, we have evaluated the synergistic effects of soluble fibres and probiotic fermented milk on adiposity, insulin resistance and dyslipidemia in C57BL/6 mice fed high-fat and sucrose diet for 18 weeks. To explore the synergistic effect of soluble fibres (gum acacia/inulin) and Lactobacillus casei NCDC19 fermented milk on adiposity, insulin resistance and lipid mobilization genes in dietinduced obese mice. C57BL/6 mice were divided randomly into three groups (n = 9/group) according to their body weights. The HFS group was fed high-fat and sucrose diet, the HFS-GFM group was fed HFS diet incorporated with gum acacia (7%, w/w) along with L. casei NCDC19 fermented milk and HFSIFM group was fed HFS diet incorporated with inulin (7%, w/w) along with L. casei NCDC19 fermented milk. At the end of the experiment, final body weight, epididymal fat (E.fat) weight, and adipocyte size were found to be lower in groups received either gum acacia or inulin in combination with L. casei NCDC19 fermented milk (HFS-GFM or HFS-IFM). Also, fasting blood glucose, serum insulin, triglycerides, and VLDL-cholesterol levels were decreased significantly in both HFS-GFM and HFSIFM fed groups. Furthermore, relative mRNA expression of genes (cpt1, foxa2, pgc1β, and pparα) related to fatty acid oxidation enhanced significantly in the liver. In E.fat pad, expression of adiponectin was upregulated, whereas, leptin expression was reduced considerably. Also, expression of fasting-induced adipose factor enhanced significantly in the distal ileum of mice in HFS-GFM and HFS-IFM groups. Overall, we demonstrate that co-administration of soluble fibres viz. gum acacia, inulin and L. casei NCDC19 fermented milk exhibited the anti-adiposity effects, improved insulin sensitivity and dyslipidemia in mice via modulation of lipid mobilization genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call