Abstract
The safe and efficient targeted delivery of chemotherapeutic drugs has remained a challenge in metastatic breast cancer therapy. Herein, we report a rational drug delivery strategy of co-administering tumor-penetrating peptide-iRGD with self-assembled amphiphilic block copolymer nanoparticles (HA-PLA) to inhibit tumor growth and lung metastasis in 4T1 breast cancer xenograft bearing mice through increasing drug accumulation in the tumors, inducing receptor-mediated tumor cell targeting without causing severe side effects. In vitro, HA-PLA displayed sustained and pH-sensitive release behavior. The cellular uptake of HA-PLA on high CD44-expressing 4T1 cells was significantly higher than the endocytosis on low CD44-expressing L929 fibroblast cells. In vivo, HA-PLA significantly extended the blood circulation time of DOX, displayed no "accelerated blood clearance (ABC) phenomenon" after repeated injection and decreased the side effects of DOX. When combined with iRGD, the drug distribution and penetration of HA-PLA in tumors were remarkably increased, resulting in better antitumor efficacy and the longest whole survival. In particular, the co-administration of iRGD with HA-PLA greatly increased drug distribution in the lung, which contributed to the effective inhibition of the lung metastasis of breast cancer. Therefore, co-administering iRGD with HA-PLA is a promising approach for metastatic breast cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.