Abstract
Beta-amyloid (Aβ) peptide accumulation has long been implicated in the pathogenesis of Alzheimer's disease (AD). Hippocampal network hyperexcitability in the early stages of the disease leads to increased epileptiform activity and eventually cognitive decline. We found that acute application of 250 nM soluble Aβ42 oligomers increased Ca2+ activity in hippocampal neurons in parallel with a significant decrease in activity in Aβ42-treated interneurons. A potential target of Aβ42 is the nicotinic acetylcholine receptor (nAChR). Three major subtypes of nAChRs (α7, α4β2, and α3β4) have been reported in the human hippocampus. Simultaneous inhibition of both α7 and α4β2 nAChRs mimicked the Aβ42 effects on both excitatory and inhibitory neurons. However, inhibition of all 3 subtypes showed the opposite effect. Importantly, simultaneous activation of α7 and α4β2 nAChRs was required to reverse Aβ42-induced neuronal hyperexcitation. We suggest co-activation of α7 and α4β2 nAChRs is required to reverse Aβ42-induced Ca2+ hyperexcitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.