Abstract
Decentralized energy systems are thought to have great potential for supplying electricity, cooling, and heating to buildings. A decentralized system combining a solid oxide fuel cell (SOFC) with an absorption chiller-heater (ACH) is proposed. The CO 2-emissions and costs of using different configurations of this SOFC-based system to provide an office building in Tokyo with electricity, cooling and heating are calculated by using an SOFC-model and an absorption-chiller model together with data for cooling and heating loads measured at an office building in downtown Tokyo. The results are compared with the CO 2-emissions and costs of a conventional system that obtains the base electricity requirements as well as electricity for an electric chiller–heater system from the central power grid. The fully decentralized SOFC-based energy system could result in a potential CO 2 reduction of over 30% at an estimated cost increase of about 70% compared to the conventional system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.