Abstract
Background and Aims Simulating resource allocation in crops requires an integrated view of plant functioning and the formalization of interactions between carbon (C) and nitrogen (N) metabolisms. This study evaluates the functional-structural model CN-Wheat developed for winter wheat after anthesis. Methods In CN-Wheat the acquisition and allocation of resources between photosynthetic organs, roots and grains are emergent properties of sink and source activities and transfers of mobile metabolites. CN-Wheat was calibrated for field plants under three N fertilizations at anthesis. Model parameters were taken from the literature or calibrated on the experimental data. Key Results The model was able to predict the temporal variations and the distribution of resources in the culm. Thus, CN-Wheat accurately predicted the post-anthesis kinetics of dry masses and N content of photosynthetic organs and grains in response to N fertilization. In our simulations, when soil nitrates were non-limiting, N in grains was ultimately determined by availability of C for root activity. Dry matter accumulation in grains was mostly affected by photosynthetic organ lifespan, which was regulated by protein turnover and C-regulated root activity. Conclusions The present study illustrates that the hypotheses implemented in the model were able to predict realistic dynamics and spatial patterns of C and N. CN-Wheat provided insights into the interplay of C and N metabolism and how the depletion of mobile metabolites due to grain filling ultimately results in the cessation of resource capture. This enabled us to identify processes that limit grain mass and protein content and are potential targets for plant breeding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.