Abstract

This work reports a novel CNT/STF/Kevlar-based (CNT, carbon nanotubes; STF, shear thickening fluid) wearable electronic textile (ET) composite with excellent protective and sensing performance. The dynamic impact resistance test shows the maximum resistance force of the single-layer ET composite reaches as high as 1232 N, which is much larger than the neat Kevlar (746 N), indicating that the ET composite can absorb more energy and sustain higher impact force. Due to the incorporation of the carbon nanotubes (CNTs), the ET composite shows excellent conductivity, thus it can be applied as a sensor to monitor signals of various human body movements. Due to the good flexibility, high sensitivity, and excellent protective performance, the ET composite exhibits high potential in the intelligent wearable electronic textile product, which possesses both excellent protective and sensing performance for human bodies in different environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.