Abstract

The uncontrollable formation of polymorphous Li deposits, e.g., whiskers, mosses, or dendrites resulting from nonuniform interfacial current distribution and internal stress release in the upward direction on the conventional current collector (e.g., Cu foil) of Li metal rechargeable batteries with a lithium-metal-free negatrode (LMFRBs), leads to rapid performance degradation or serious safety problems. The 3D carbon nanotubes (CNTs) skeleton has been proven to effectively reduce the current density and eliminate the internal accumulated stress. However, remarkable electrolyte decomposition, inherent Li source consumption due to repeated SEI formation, and Li+ intercalation in CNTs limit the application of 3D CNTs skeleton. Thus, it is necessary to avoid the side effects of the 3D CNTs skeleton and retain uniform interfacial current distribution and stress mitigation. In this work, we integrate the CNTs network with a soft functional polymer polyvinylidene fluoride (PVDF) to form a relatively dense coating layer on Cu foil, which can shield the contact between the internal surface of the 3D CNTs framework and the electrolyte. Simultaneously, the Li-F-rich SEI resulting from the partial reduction of PVDF with deposited Li and the soft nature of the coating layer release the accumulation of internal stress in the horizontal direction, resulting in mosses/whisker-free Li deposition. Thus, improved Li deposition/dissolution and stable cycling performance of the LMFRBs can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.