Abstract

In this paper, a carbon nanotube (CNT)/polydimethylsiloxane (PDMS) conductive composite foam (CCF) was fabricated via a dual-solvent ice template (DSIT) process, whose structure features the conductive filler CNT "embedded" in the cell wall surface, and this CCF was applied to the field of flexible piezoresistive sensing. Benefiting from the sensitive conductive network constructed by the DSIT process, the CNT/PDMS CCF-based piezoresistive sensor can effectively detect compression strains down to 0.1% and exhibits excellent and stable response at compression strains up to 90%. In addition, the CCF shows fast response and recovery times (54 ms and 65 ms), as well as excellent durability and stability (2000 cycles). An electronic skin assembled from the CCF into 5 × 5 pixels was applied to detect the magnitude and spatial distribution of forces and strains. The CCF was also applied for roughness recognition, optical and thermal sensing responses, which shows its potential applications in personalized medical monitoring, electronic smart skin fabrication, external environment monitoring and other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call