Abstract

An essential aspect of successful cancer diagnosis is the identification of malignant tumors during the early stages of development, as this can significantly diminish patient mortality rates and increase their chances of survival. This task is facilitated by cancer biomarkers, which play a crucial role in determining the stage of cancer cells, monitoring their growth, and evaluating the success of treatment. However, conventional cancer detection methods involve several intricate steps, such as time-consuming nucleic acid amplification, target detection, and a complex treatment process that may not be appropriate for rapid screening. Biosensors are emerging as promising diagnostic tools for detecting cancer, and carbon nanotube (CNT)- and graphene-based transistor biosensors have shown great potential due to their unique electrical and mechanical properties. These biosensors have high sensitivity and selectivity, allowing for the rapid detection of cancer biomarkers at low concentrations. This review article discusses recent advances in the development of CNT- and graphene-based transistor biosensors for cancer detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.