Abstract

BackgroundMultiple sclerosis (MS) is a complex, heterogenous disease characterized by inflammation, demyelination, and blood–brain barrier (BBB) permeability. Currently, active disease is determined by physician confirmed relapse or detection of contrast enhancing lesions via MRI indicative of BBB permeability. However, clinical confirmation of active disease can be cumbersome. As such, disease monitoring in MS could benefit from identification of an easily accessible biomarker of active disease. We believe extracellular vesicles (EV) isolated from plasma are excellent candidates to fulfill this need. Because of the critical role BBB permeability plays in MS pathogenesis and identification of active disease, we sought to identify EV originating from central nervous system (CNS) endothelial as biomarkers of active MS. Because endothelial cells secrete more EV when stimulated or injured, we hypothesized that circulating concentrations of CNS endothelial derived EV will be increased in MS patients with active disease.MethodsTo test this, we developed a novel method to identify EV originating from CNS endothelial cells isolated from patient plasma using flow cytometry. Endothelial derived EV were identified by the absence of lymphocyte or platelet markers CD3 and CD41, respectively, and positive expression of pan-endothelial markers CD31, CD105, or CD144. To determine if endothelial derived EV originated from CNS endothelial cells, EV expressing CD31, CD105, or CD144 were evaluated for expression of the myelin and lymphocyte protein MAL, a protein specifically expressed by CNS endothelial cells compared to endothelial cells of peripheral organs.ResultsQuality control experiments indicate that EV detected using our flow cytometry method are 0.2 to 1 micron in size. Flow cytometry analysis of EV isolated from 20 healthy controls, 16 relapsing–remitting MS (RRMS) patients with active disease not receiving disease modifying therapy, 14 RRMS patients with stable disease not receiving disease modifying therapy, 17 relapsing-RRMS patients with stable disease receiving natalizumab, and 14 RRMS patients with stable disease receiving ocrelizumab revealed a significant increase in the plasma concentration of CNS endothelial derived EV in patients with active disease compared to all other groups (p = 0.001). Conclusions: For the first time, we have identified a method to identify CNS endothelial derived EV in circulation from human blood samples. Results from our pilot study indicate that increased levels of CNS endothelial derived EV may be a biomarker of BBB permeability and active disease in MS.

Highlights

  • Multiple sclerosis (MS) is a complex, heterogenous disease characterized by inflammation, demyelination, and blood–brain barrier (BBB) permeability

  • Study cohort We enrolled a total of 20 healthy controls (HC), 16 relapsing–remitting MS (RRMS) patients with active disease not receiving disease modifying therapy (DMT), 14 RRMS patients with stable disease not receiving DMT, 17 RRMS patients with stable disease receiving natalizumab, and 14 RRMS patients with stable disease receiving ocrelizumab (Table 1)

  • To identify extracellular vesicles (EV) originating from central nervous system (CNS) endothelial cells, we have proposed to detect a combination of pan-endothelial markers (CD31, CD105, or CD144) and Myelin and lymphocyte protein (MAL) on individual EV

Read more

Summary

Introduction

Multiple sclerosis (MS) is a complex, heterogenous disease characterized by inflammation, demyelination, and blood–brain barrier (BBB) permeability. This includes exocytosis of multivesicular bodies for exosome secretion, budding from the plasma membrane for microvesicle secretion, and blebbing from the plasma membrane of apoptotic cells for apoptotic body secretion Despite their mode of biogenesis, all EV contain a lipid bilayer and a wide array of biologically active components including proteins, lipids, and various nucleic acid species. EV have been implicated as important mediators of both homeostasis and pathogenesis Because of these properties, EV have gained recent interest as possible biomarkers for numerous diseases including neurological disorders like multiple sclerosis (MS) [10,11,12,13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.