Abstract

Adipogenesis is regulated by a wide variety of compounds. An adipogenic cocktail containing insulin (INS), dexamethasone (DEX) and 3-isobutyl-1-methyl xanthine (IBMX) is routinely used to induce adipogenesis in 3T3-L1 preadipocytes, but the biochemical actions in adipogenesis of IBMX, a non-specific phosphodiesterase inhibitor, are not completely understood. In this study we show that C-type natriuretic peptide (CNP) is an endogenous adipogenesis regulator which can largely replace the function of IBMX. In 3T3-L1 preadipocytes, CNP potently elevated cGMP production through guanylyl cyclase-B (GC-B). Lipid droplets were evident in these cells upon stimulation with CNP for 12 days in the presence of INS and DEX, and their adiposity, evaluated by Oil Red O, was significantly higher than in cells stimulated with INS and DEX only. Membrane-permeable cGMP analogue also enhanced adiposity when cells were cultured together with INS and DEX, and KT5823, a non-specific cGMP-dependent kinase (cGK) inhibitor, suppressed the stimulatory effect of IBMX on adipogenesis, revealing that IBMX-stimulated adipogenesis is mediated through cGK. The enhancement of adiposity elicited by CNP was accompanied by increased mRNA levels of adipocyte-specific genes including those encoding peroxisome proliferator-activated receptor gamma and glucose transporter 4. Interestingly, the mRNA level of CNP itself was markedly enhanced in 3T3-L1 cells upon stimulation with INS, DEX and IBMX, reaching a maximum at 8 h incubation with the cocktail. These observations suggest that the CNP/GC-B system participates in regulation of adipogenesis, particularly at an early stage in the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call