Abstract

In this study, we propose an encoder–decoder convolutional neural network-based approach for estimating the pressure field around an airfoil. The developed tool is one of the early steps of a machine-learning-based aerodynamic performance prediction tool. Network training and evaluation are performed from a set of computational fluid dynamics (CFD)-based solutions of the 2-D flow field around a group of known airfoils involving symmetrical, cambered, thick and thin airfoils. Reynolds averaged Navier Stokes-based CFD simulations are performed at a selected single Mach number and for an angle of attack condition. The calculated pressure field, which is the main parameter for lift and drag calculations, is fed to the neural network training algorithm. Pressure data are calculated using CFD methods on high-quality structured computational grids. For the better shape learning, a distance map is generated from airfoil shape and provided to the algorithm at data locations of the pressure points relative to the airfoil shape. Experiments are conducted with unseen airfoil shapes to evaluate the predictive capability of our model. Performance analysis for airfoils with different thicknesses and cambers is conducted. We also investigated the effect of the shock on the performance of our model. Overall, our model achieves 88 $$\%$$ accuracy for unseen airfoil shapes and shows promise to capture the overall flow pattern accurately. Also, significant speed-up is achieved compared to time-consuming CFD simulations. We achieve almost four orders of speed-up with a much cheaper computational resource.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.