Abstract
All anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection.The proposed method is applied on synthetic and field data generated for edge detection of near-surface geological bodies that mask each other in various depths and dimensions. The program named as CNNEDGEPOT is a set of functions written in MATLAB software. The GUI helps the user to easily change all the required CNN model parameters. A visual evaluation of the outputs due to DTCNN and CTCNN are carried out and the results are compared with each other. These examples demonstrate that in detecting the geological features the CNN model can be used for visual interpretation of near surface gravity or magnetic anomaly maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.