Abstract
An efficient deep-learning prediction model for identifying chronic kidney disease (CKD) from exhaled breath is presented in this paper. The concentration of urea will be higher in CKD patients. Salivary urease breaks down the stored urea into ammonia, which is then excreted through breath. Thus, by monitoring the breath ammonia content, it is possible to identify the presence of high urea levels in the body. In this work, a novel sensing module is developed and applied to measure and assess the amount of ammonia in exhaled breath. Moreover, an effective deep learning prediction model that combines the CatBoost algorithm and convolutional neural network (CNN) is used to automate the prediction of disease. The proposed model, which combines the benefits of gradient-boosting and CNN, attained an exceptional accuracy of 98.37%. Experiments are conducted to evaluate the proposed model using real-time data and to assess how well it performs in comparison with existing deep learning methods. Our study's findings demonstrate that kidney disease can be accurately and noninvasively diagnosed using the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.