Abstract

A Compton/Pair telescope, designed to provide spectral resolved images of cosmic photons from sub-MeV to GeV energies, records a wealth of data in a combination of tracking detector and calorimeter. Onboard event classification can be required to decide on which data to down-link with priority, given limited data-transfer bandwidth. Event classification is also the first and one of the most crucial steps in reconstructing data. Its outcome determines the further handling of the event, i.e., the type of reconstruction (Compton, pair) or, possibly, the decision to discard it. Errors at this stage result in misreconstruction and loss of source information. We present a classification algorithm driven by a Convolutional Neural Network. It provides classification of the type of electromagnetic interaction, based solely on low-level detector data. We introduce the task, describe the architecture and the dataset used, and present the performance of this method in the context of the proposed (e-)ASTROGAM and similar telescopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.