Abstract

The subject-transfer approach has recently been proposed to overcome the limitation of requiring a long training time in the motor imagery (MI)-based brain-computer interfaces (BCIs). However, the applicability for reducing the training time for lower-limb MI-BCI has not been investigated yet. In this study, we proposed a dual-domain convolutional neural network (CNN)-based subject-transfer method. We investigated how the classification accuracy changes according to the reduced number of training trials. Two lower-limb MIs (gait and sit-down) and rest electroencephalography (EEG) data were collected from five healthy subjects. The CNN model was pre-trained using other subjects’ data and fine-tuned with the target subject’s training data. There was a significant increase in classification accuracy (7% with 15 and 10 trials) compared to the self-training approach using the same CNN model trained only with the target subject's training data. Based on these results, the subject-transfer approach can contribute to minimizing the training time of lower-limb MI-BCIs while preserving the classification accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call