Abstract
Deep learning (DL) methods receive increasing attention within the field of human activity recognition (HAR) due to their success in other machine learning domains. Nonetheless, a direct transfer of these methods is often not possible due to domain specific challenges (e.g. handling of multi-modal sensor data, lack of large labeled datasets). In this paper, we address three key aspects for the future development of robust DL methods for HAR: (1) Is it beneficial to apply data specific normalization? (2) How to optimally fuse multimodal sensor data? (3) How robust are these approaches with respect to available training data? We evaluate convolutional neuronal networks (CNNs) on a new large real-world multimodal dataset (RBK) as well as the PAMAP2 dataset. Our results indicate that sensor specific normalization techniques are required. We present a novel pressure specific normalization method which increases the F1-score by ∼ 4.5 percentage points (pp) on the RBK dataset. Further, we show that late- and hybrid fusion techniques are superior compared to early fusion techniques, increasing the F1-score by up to 3.5 pp (RBK dataset). Finally, our results reveal that in particular CNNs based on a shared filter approach have a smaller dependency on the amount of available training data compared to other fusion techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.