Abstract

This paper is to investigate a novel design for local motion vectors (LMVs) of image sequences, which are often used in a digital image stabilization (IS) system. The IS technique removes unwanted shaking phenomenon in image sequences captured by hand-held camcorders. It includes two main parts such as motion estimation and compensation. Most of computation power occurs in the part of motion estimation. In order to reduce this complexity, an idea, which integrates an adaptive-threshold method and cellular neural networks (CNN) architecture, is designed to improve this problem. The design only implements the most important local motion estimation with the array size of 19/spl times/25 pixels. Experimental results with HSPICE simulation and CNNUM are shown that the proposed architecture fast searches the location of possible LVMs and has the capability of real-time operations. The complete design has integrated into the total area of 8.1mm/sup 2/ by using TSMC 0.35/spl mu/m mixed-signal process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.