Abstract

Quantitive information about corneal endothelium cells’ morphometry is vital for assessing cornea pathologies. Nevertheless, in clinical, everyday routine dominates qualitative assessment based on visual inspection of the microscopy images. Although several systems exist for automatic segmentation of corneal endothelial cells, they exhibit certain limitations. The main one is sensitivity to low contrast and uneven illumination, resulting in over-segmentation. Subsequently, image segmentation results often require manual editing of missing or false cell edges. Therefore, this paper further investigates the problem of corneal endothelium cell segmentation. A fully automatic pipeline is proposed that incorporates the watershed algorithm for marker-driven segmentation of corneal endothelial cells and an encoder-decoder convolutional neural network trained in a sliding window set up to predict the probability of cell centers (markers) and cell borders. The predicted markers are used for watershed segmentation of edge probability maps outputted by a neural network. The proposed method's performance on a heterogeneous dataset comprising four publicly available corneal endothelium image datasets is analyzed. The performance of three convolutional neural network models (i.e., U-Net, SegNet, and W-Net) incorporated in the proposed pipeline is examined. The results of the proposed pipeline are analyzed and compared to the state-of-the-art competitor. The obtained results are promising. Regardless of the convolutional neural model incorporated into the proposed pipeline, it notably outperforms the competitor. The proposed method scored 97.72% of cell detection accuracy, compared to 87.38% achieved by the competitor. The advantage of the introduced method is also apparent for cell size, DICE coefficient, and Modified Hausdorff distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call