Abstract
Amidst escalating global populations and dwindling arable lands, enhancing agricultural productivity and sustainability is imperative. Addressing the inefficiencies of traditional agriculture, which struggles to meet the demands of large-scale production, this paper introduces a highly configurable smart agricultural robotic arm system (CARA), engineered using convolutional neural networks and multilayer perceptron. CARA integrates a highly configurable robotic arm, an image acquisition module, and a deep processing center, embodying the convergence of advanced robotics and artificial intelligence to facilitate precise and efficient agricultural tasks including harvesting, pesticide application, and crop inspection. Rigorous experimental validations confirm that the system significantly enhances operational efficiency, adapts seamlessly to diverse agricultural contexts, and bolsters the precision and sustainability of farming practices. This study not only underscores the vital role of intelligent automation in modern agriculture but also sets a precedent for future agricultural innovations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.