Abstract
We investigate the capability of machine learning (ML) based reduced order model (ML-ROM) for two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. The present ML-ROM is constructed by two ML schemes: a convolutional neural network-based autoencoder (CNN-AE) and a long short-term memory (LSTM). The CNN-AE is utilized to map high-dimensional flow fields obtained by direct numerical simulation (DNS) into a low-dimensional latent space while keeping their spatially coherent information. The LSTM is then trained to learn the temporal evolution of the mapped latent vectors together with the information on the Reynolds number. Using the trained LSTM model, the high-dimensional dynamics of flow fields can be reproduced with the aid of the decoder part of CNN-AE, which can map the predicted low-dimensional latent vector to the high-dimensional space. We find that the flow fields generated by the present ML-ROM show statistical agreement with the reference DNS data. The dependence of the accuracy of the proposed model on the Reynolds number is also examined in detail. The present results demonstrate that the ML-ROM can reconstruct flows at the Reynolds numbers that were not used in the training process unless the flow regime drastically changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.