Abstract
Aiming at the problem of coal gangue identification in the current fully mechanized mining face and coal washing, this article proposed a convolution neural network (CNN) coal and rock identification method based on hyperspectral data. First, coal and rock spectrum data were collected by a near-infrared spectrometer, and then four methods were used to filter 120 sets of collected data: first-order differential (FD), second-order differential (SD), standard normal variable transformation (SNV), and multi-style smoothing. The coal and rock reflectance spectrum data were pre-processed to enhance the intensity of spectral reflectance and absorption characteristics, as well as effectively remove the spectral curve noise generated by instrument performance and environmental factors. A CNN model was constructed, and its advantages and disadvantages were judged based on the accuracy of the three parameter combinations (i.e., the learning rate, the number of feature extraction layers, and the dropout rate) to generate the best CNN classifier for the hyperspectral data for rock recognition. The experiments show that the recognition accuracy of the one-dimensional CNN model proposed in this paper reaches 94.6%. Verification of the advantages and effectiveness of the method were proposed in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Coal Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.