Abstract
Cybersecurity represents an important challenge specific to digital technology in the modern world, and is of vital importance for reducing or even preventing the impact of cybercrime. The Linux operating system is designed as open-source software that includes some features of software tools intended for network security and cybersecurity systems, such as intruder detection and penetration testing. With these tools in Linux, we need a special system to constantly detect intrusions into connected network devices. This research presents a method for detecting intrusion attacks based on analyzing the natural behavior of the system by building a special convolutional network to achieve this goal. The classification and detection results of the proposed convolutional neural network were compared with the regular machine learning method (SVM), with feature selection by correlation for both methods. Same datasets were used to train and test each of CNN and SVM. Some metrics were determined to evaluate the performance of classification and prediction models for a specific type of regular attacks, DoS and BOT attacks, where both SVM and CNN obtained an accuracy of 85.58% and 95.59%, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.